A Lyapunov-type inequality for a fractional q-difference boundary value problem
نویسندگان
چکیده
In this paper, we establish a Lyapunov-type inequality for a fractional q-difference equation subject to Dirichlet-type boundary conditions. The obtained inequality generalizes several existing results from the literature including the standard Lyapunov inequality. We use that result to provide an interval, where a certain Mittag-Leffler function has no real zeros. We present also another application of the obtained inequality, where we prove that existence implies uniqueness for a certain class of fractional q-difference boundary value problems. c ©2016 All rights reserved.
منابع مشابه
Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions
where q : [a,b] → R is a continuous function, and the zeros a and b of every solution y(t) are consecutive. Since then, many generalizations of the Lyapunov inequality have appeared in the literature (see [–] and the references therein). Recently, the research of Lyapunov-type inequalities for fractional boundary value problem has begun. In [], Ferreira investigated a Lyapunov-type inequali...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملFractional operators with exponential kernels and a Lyapunov type inequality
*Correspondence: [email protected] Department of Mathematics and Physical Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia Abstract In this article, we extend fractional calculus with nonsingular exponential kernels, initiated recently by Caputo and Fabrizio, to higher order. The extension is given to both left and right fractional derivatives and integrals. ...
متن کاملA generalized Lyapunov's inequality for a fractional boundary value problem
We prove existence of positive solutions to a nonlinear fractional boundary value problem. Then, under some mild assumptions on the nonlinear term, we obtain a smart generalization of Lyapunov’s inequality. The new results are illustrated through examples.
متن کامل